-A184 742 SOFTMARE DEVELOPMENT ENVIRONNENTSCU) CM“EG!E-HELLOU
- NIV PITTSBURGH PA SOFTHWARE ENGINEERING INST
ELLISON JUL 86 CMU/SET-86-TN-18 ESD-TR- 86 217
UNCLASSIFIED F19628 85-C .

———

i

o gy " TR

) LI
et T e S

Lo JA',‘« .‘i' i K ‘50"‘ g

L p2s 2.5
w o e
v Bk
T l2.0

==
I=

| 4me. FILE COPVES D 72 - 6T

AD-A 18 1 742 'i—:‘ Carnegie-Melion University

= Software Engineering Institute
Software Development Environments

by
Robert Ellison

July 1986

. ELECTE
,.‘ ‘ ’ ’ &;’gfﬂ 01987D

DTIC

SECURITY CLASSIFICATION OF THIS PAGE
_

AP RITIL RS TG WRJT

- .

REPORT DOCUMENTATION PAGE

N/A

1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS I
UNLIMITED, UNCLASSIFIED NONE |
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

2». O CLASSIFICATION/DOWNGRADING SCHEDULE
N7&

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
SEI-86-TM-10

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-86-217

SOFTWARE ENGINEERING INST. (1f applicable)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMROL
SEI

T7s. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADORESS (City, State and ZIP Code)
CARENGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, State and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE
HANSCOM, MA 01731

8. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (1f applicabie) ¢
SEI JPO ESD/XRS1 F19628 85 0003

8c. ADDRESS (City, State and ZIP Code)
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

11. TITLE (Include Security Classification)
SOFTWARE DEVELOPMENT ENVIRONMENTS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

63752F N/A N/A N/A

12. PERSONAL AUTHOR(S)
ROBERT ELLISON
13a. TYPE OF REPORT 13b. TIME COVERED

FINAL FROM e TO __eese

14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

JULY 1986 8

16. SUPPLEMENTARY NOTATION
N/A
V7. COSAT!I CODES
FIELD GROUP SuUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

—]

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THE GROWING DEMAND FOR RELIABLE LARGE-SCALE SOFTWARE SYSTEMS CANNOT BE MET WITHOUT
ADVANCES IN SOFTWARE DEVELOPMENT ENVIRONMENTS.
ARE EMERGING, A NUMBER OF ISSUES MUST BE ADDRESSED TO ENSURE THE TIMELY TRANSITION

THIS PAPER DISCUSSES ISSUES RELEVANT TO THE
TRANSITION OF SUCH TECHNOLOGIES AND PROJECTS TO BE UNDERTAKEN BY THE SOFTWARE ENGINEERING

OF THOSE TECHNOLOGIES TO PRACTICE.

INSTITUTE TO ADDRESS THOSE ISSUES.

ALTHOUGH PROMISING TECHNOLOGIES

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassIFIED/UNLIMITED [same as reT.) oTic users (W

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED, DTIC, NTIS

22a. NAME OF RESPONSIBLE INDIVIDUAL
KARL H. SHINGLER

22b TELEPHONE NUMBER
Include Arca Code)

412°568-7630

22¢ OFFICE SYMBOL
SE1 JPO

DD FORM 1473, 83 APR

Lo -’l'__'r [,('_’._\‘\, J;ﬁ!‘ «',

XN Y < EE R R L Oy VN CE PR P A TR LR
N A A e A AR IR

EDITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

Technical Memorandum
SEI-86-TM-10
July 1986

Software Development Environments
by

Robert Ellison

Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213

Approved for Public Release. Distribution unlimited.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0O
Justification__._____4
By.

_Distribution/

Ava;la_bilitv Codes
Avail and/or |
Dist Special

Al

This work was sponsored by the Department of Defense.

The views and conclusions in this document are those of the author and should not be
interpreted as representing official policies, either expressed or implied, of the Software
Engineering Institute, Carnegie-Mellon University, the Department of Defense, or the U.S.
Government.

P ¥ .

IS
P e I

-t . TS W A0 =

A Software Development Environments:
Research to Practice

\ Robert J. Ellison
I
T—ABSTRACT The growing demand for reliable large-scale software systems cannot be met without
advances in software development environments. Although promising technolgoies are emerging,
a number of issues must be addressed to ensure the timely transition of those technologies to
practice. This paper discusses issues relevant to the transition of such technologies and projects
to be undertaken by the Software Engineering Institute to address those issues.

.”‘
Ve
rd

1 Introduction

During the last few years, we have seen the appearance ota number of software development
environments for support of programming-in-the-la] [4]. The Software Engineering Institute
at Carnegie-Mellon University has been tagedﬁith speeding the transition of modem software
engineering technology to practice szré’n of that effort has been devoted to examining large-
scale software development envifonment efforts. This note represents the author's observations
of that process as well-as the comments expressed by the participants of the SEI workshop on
the Software Factory of the Future, which was held in Morgantown, West Virginia in October,
1985. It also reflects the rationale that helps guide the definition of SEI projects on software
develgpment environments.

2 Transition of Environment Technology to Practice

While there has been significant research activity with respect to environment generation {10} [6],
very little of that work has yet to appear in practice. Current large-scale environments are
primarily hand crafted and often reflect the organization’s internal software methodology. There
are a wide variety of implementation schemes. Some organizations integrate a large collection of
internally developed tools, while others have adopted a strategy of using commercial tooling.
There is little commonality of the underlying system support for networks, databases, tooling, tool
interface conventions, or user interfaces. The potential for sharing among these environments
appears to be rather limited.

The SEl's primary mission is the transition of modern software engineering methods to practice.
Software engineering environments represent a good means to support that end. They provide
the means both to integrate tools and to provide a uniform conceptual framework for the user.
While from one point of view an environment can enforce unform practices, it also provides the
means to maintain the rich information base that most likely will be required to support reusability
of requirements and designs. The SEI's role with respect 10 environments is not to build a specific
environment, but to help explore the validity of new concepts by building prototypes, to stimulate
the research community to attack critical problems, and to refine the requirements for the next

generation of large-scale environments.
L

CRAX AT S 4 b e R ke -, T AR Y
N ln)." ';’x’l’-?)‘ai%lyﬁ':)?;f"».jl_.-g:i 52!’-{""! “Q“ff :lﬁ‘)‘jﬁi"l“_:" 01‘1\5'. . "Y;‘:'_‘:x...ﬁ “'l‘ “"o :'}' '\‘;qi 3:."0._. H("

There are some pragmatic considerations that impact the design of industrial-grade environments

that should be addressed if we want to see environments applied successfully to large-scale

! software development. The most critical issue may be the controlled evolution of the environ-
ment. Software development environments must adjust to new hardware such as workstations or
K graphical displays, and to software such as database technology or operating system support for
distributing computing; they also must be able to reflect changes in the software process as the
tield of software engineering matures. In practice, an environment also must adjust over the life of
' a project to changes in project objectives or management policies. Within one organization, the
.: demand will exist to tailor or extend the base-line environment to support needs specific to a
:‘. project or application. This issue will be especially critical for an organization such as the SEI that
" has been charged with the task of speeding transition of research concepts to practice. While a
specific environment might provide a good vehicle for the rapid introduction of Ada and as-

T sociated software engineering practices, that same environment may be a significant impediment
b to the next wave of technological changes if it is not easy to modify or extend. Thus, while it may
t be hard to convince management to buy or build its first software development environment, it will
X probably be even harder to sell the second one given the initial investment. The state of the
current practice and the relatively immature state of the theory for large-scale environments sug-

¢ gest that we would be naive to expect current environments to be long lived. On the other hand, it
'.‘: is not reasonable to continue to replace, rather than evolve, such expensive systems.
L]
‘l

' 3 Scope: Environment Construction

; A discussion of the construction of large-scale environments often turns to the management of

oy scale. Such environments must not only manage a large amount of information, they also must
': coordinate the efforts of a large programming team. The issue is a natural one as many research
i, prototypes have not demonstrated that they can manage a project even on the order of 100,000

lines of source code, and the existing industrial systems seem to stretch the capability of current
. database systems. Certainly scale will be one of the issues that the SEI will address, but several

& trends suggest that the scope of the environment should have higher priority in terms of in-
4 creased functionality across the full life cycle as well as better integration between lite-cycle
G phases.

Environment research in recent years has concentrated on the coding phase of software develop-
ment and has been able to build on the theoretical foundations on language syntax and seman-
tics. The design of full life-cycle environments does not yet have the equivalent underpinnings.
The issue is not just the coverage of life-Cycle phases, but the quality and type of tooling so that
we can support the highly interactive and incremental style of processing demonstrated in [6],
[9] or [10]. While work like [7] or [12] is a first step, there is nothing of equivalent maturity for
dealing with the semantics of a full life-cycle environment. Certainly work in artificial intelligence
or formal methods will apply, but it is precisely because an environment must mix such a variety
‘ of approaches that the design of the foundation becomes so critical.

-
g™

> - - -

- - -
—.’.-

The construction of envionment generators has primarily been a research topic, but the prag-

- _ ' R
s e Al T QRN SRR 8 S

matic considerations discussed above suggest that it will be critical 1o automate environment
construction and that this topic should be given priority by the SEI. The size and complexity of
modermn environments demand resuable components. While first generation environment
generators primarily concentrated on programming-in-the-small and the static semantics of
ALGOL-class languages, they demonstrated the kind of reusability and extensibility that will be
needed. Gandalf [6] attempted to address some of the issues involved with programming-in-the-
large, and experience with that system [5] raised several issues that impact building large-scale
environments.

The complexity of environments is driven by the desire to support the semantics of the software
process in addition to the semantics of the implementation languages. A major goal of the Gan-
dalf project was to address the semantic issues that arise with large-scale environments. The
first environment prototypes constructed with the Gandalf system emphasized configuration
management, version control, and project management, and the semantic issues raised by the
effort is described in [7]. The Gandalf system is data driven. A procedure called an action routine
is attached to each type of data and is responsible for maintaining consistency whenever that
item is modified. Semantic information is effectively centralized in the action routine, and in most
instances invisible 1o tool fragments. Whenever possible, too! activation is tied to the data rather
than embedded in the tools themselves. This approach can make it easier to reuse tool frag-
ments and to extend the system. This kind of separation will be more critical as we embed the
semantics of the software process into environments. There are a variety of implementation
schemes other than the Gandalf ones, such as a rule-based paradigm, that can obtain the same
result. Kaiser [7] describes a more declarative approach.

Experience with environment generators, such as Gandalf, raises questions about the nature of
tools in the next generation of environments. In most instances the user interface, the presen-
tation of the data, and tool activation are separated from the tools themselves. That kind of
architecture seems to be required if we are to manage effectively the change in environments as
well as support tool fragments that are effectively reusable. That trend continues into new work
such as Arcadia [12] and was one area of agreement at the Morgantown workshop. Such a tool
architecture raises difficult problems in terms of moving such a concept to practice. If the style of
tool construction is too different, then importation of existing tools will be difficuft. This is an issue
that organizations such as the SEI must address.

4 Scope: The Environment User

The kind of general paradigms for environments range from an intelligent software assistant to an
automated software factory driven by formal methods. While the complexity of the design and
implementation of a large-scale environment often gets the most attention, the issue of the com-
plexity of the user interactions may be more critical and suggests that we should address more
carefully the user side of large-scale environments. The issue is not so much human factors but
the undertying cognitive models that best support the various tasks. The classic lite cycle
demonstrates the variety of tasks that must be addressed during software development. The

» 0
vl

200
Wyttt

expectation is that the environment can provide integration across the full life cycle and better
support users, particularly those in the maintenance or enhancement phase who must work
across a variety of phases. While we seek common conventions with respect to the user inter-
face across those tasks, it will be more important to have commonality with respect to the under-
lying cognitive models.

We should expect that the next generation of environments will support a variety of development
paradigms. For example, the early phases ot system design may be best attacked by an ex-
ploratory paradigm, while later development may be more closely controlled. In general, we
should expect to see better support for incremental or evolutionary development and hence for
tools that must work across life-cycle phases. Within a well-defined task such as design, there
are a variety of paradigms. it may be appropriate to use both data-driven and process-driven
methodologies for the same task. The limitations of our current technology or the shear effort of
building an environment often lead us to support a single approach. The next generation of en-
vironments should support multiple paradigms.

5 SEI Projects

The SEI plans to address a number of the issues raised above. Environments are a continuing
source of challenging research problems; but for a technology transition agent such as the SEI,
the most difficult problem is to foster reasonable expectations for environments and to find a
strategy for making productive use of a still maturing technology. It is not hard to draw the conclu-
sion that the expectations are growing much more rapidly that our means to meet them. There
appears to be an emerging consensus in the research community on the appropriate framework
for the next generation of environments. Some pieces of that potential solution appear as
prototypes, but certainly continued research is required for many topics.

One set of projects will address the infrastructure required of the advanced large-scale environ-
ments. The limited reusability that we now see among existing large-scale environments reflects
the very limited commonality that we have with respect to user interfaces, database management
systems, tool communication, and distributed computing that represent the infrastructure for en-
vironment construction. The SEI has set as one of its tasks the formation of a broader consensus
on the infrastructure to make it easier to support reusability across environments and to establish
a climate whereby the commercial marketplace can better contribute. The initial SEI efforts in this
direction concentrate on support for distributed computing and on management of persistent data.

Distributed environments have been particularly difficult to design and build because of the limited
support found in most operating systems. Production quality prototypes of distributed operating
systems such as the Mach system at Carnegie-Mellon University [1] are now available; the in-
creased functionally of such systems will impact both the implementation and functionality of
environment tooling. The SEI has two functions here. On one hand, we need to make sure that
the operating system requirements for large-scale environments are reflected in the next genera-
tion of operating systems. While heterogeneity of hardware and software may be a fact of iife, it

will be important for a consensus, if not a standard, to be established for interprocess com-
munication in distributed environments. The SEI will take an active role in that effort.

Management of persistent data will be an increasingly critical problem for environments that sup-
port extensive reusability or automation [8]. The level of technology represented by classical file
systems and database management systems may not be sufficient to deal with these information
management problems [8]. This is an area of on-going research and development where the SEI
will be an active participant.

A second group of SEI projects will consider more domain-specific environments and concentrate
more on user requirements. Real-time software is a major component of the Department of
Defense software efforts. Such software usually must perform within severe constraints of ef-
ficiency, reliability, and resource utilization, and is generaly believed to be harder to specify and
implement that other types of software. An environment for building real-time systems would
appear to have high priority. On the other hand, there is no generally agreed on methodology for
specifying, designing, implementing, and maintaining such software, and an environment con-
struction project would be premature. The SEI effort in this area is twofold. One project will
examine and evaluate existing methodologies for developing real-time software, perform a com-
parative critique of them, and recommend a methodology as the most suitable for use, both in
general and specifically with Ada. A second project will examine some of the technical problems
associated with real-time development environmernits such as support of debugging and testing.

Artificial intelligence has the potential for making major contributions to improving software
development. Al can bring a different perspective to addressing complex problems, such as
modeling intellectual processes, and contribute a fresh view on the software development
process. It will be important for the SEI to follow those efforts that could impact the basic goals of
environments. In addition, this project will address some of the issues we raised above with
respect to providing support for multiple paradigms and to extending the notion of activity model-
ing to better reflect the semantics of the activity.

REFERENCES

1 Mike Accetta, Robert Baron, William Bolosky, David Golub,Richard Rasid, Avadis
Tevanian, and Michael Young.
Mach: A New Kernel Foundation for Unix Development.
In Proceedings of USENIX Technical Conference. Summer 1986.

(2] Mario R. Barbacci, A. Nico Habermann, Mary Shaw.
The Software Engineering Institute: Bridging Practice and Potential.
IEEE Software , November 1985.

[3] Barry W. Boehm, Maria H. Penedo, E. Don Stuckle, Robert D. Williams, and Arthur
B. Pyster.
A Software Development Environment for Improved Productivity.
COMPUTER , June 1984,

0 Wy -'“.T\ R L LA S
A0 ,ﬂc',l.n?lf 10 :‘3‘: o s" :’l v" 0' ! .0",0 & .O"n.'..‘ h s - M

N AN . M R Lo MLANM

IO

(4]

(5]

(6]

(7]

(8]

19

[10]

AR))

(12}

Frank DeRemer and Hans Kron.
Programming-in-the-Large Versus Programming-in-the-Small.
SIGPLAN Notices , June 1975,

Robert. J. Ellison and Barbara J. Staudt.
The Evolution of the Gandalf System.
The Journal of Systems and Software , May 1985.

A. N. Habermann and David S. Notkin.

The Gandalf Software Development Environment.

In The Second Compendium of Gandalf Documentation. Carnegie-Mellon University
Computer Science Department, January 1982.

Gail E. Kaiser.
Semantics for Structure Editing Environments.
PhD thesis, Carnegie-Mellon University Computer Science Department, 1985.

John R. Nestor.
Toward a Persistent Object Base.
May, 1986.

This proceedings.

Steven P. Reiss.

Graphical Program Development with PECAN Program Development Systems.

In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments. ACM SIGSOFT/SIGPLAN, April
1984.

Thomas Reps and Tim Teitelbaum.

The Synthesizer Generator.

In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments. April 1984,

William E. Riddle and Lloyd G. Williams.
Software Environments Workshop Report.
SIGSOFT Software Engineering Notes , January 1986.

Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Jack C. Wileden, Alex Wolf and Michal
Young.
Arcadia: A Software Development Environment Research Project.
January 1986.
Camegie-Mellon University.

o ond i g

MR

o |

ny =~ D
Ty A WL e

B

Wt
